Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Metabolites ; 12(7)2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1938906

ABSTRACT

Drug resistance is a common barrier to continued effective treatment in cancer. In non-small-cell lung cancer (NSCLC), tyrosine kinase inhibitors that target the epidermal growth factor receptor (EGFR-TKIs) exhibit good efficacy in cancer treatment until acquired resistance occurs. It has been observed that drug resistance is accompanied by numerous molecular-level changes, including significant shifts in cellular metabolism. The purpose of this study was to critically and systematically review the published literature with respect to how metabolism differs in drug-resistant compared to drug-sensitive NSCLC. Understanding the differences between resistant and sensitive cells is vital and has the potential to allow interventions that enable the re-sensitisation of resistant cells to treatment, and consequently reinitiate the therapeutic effect of EGFR-TKIs. The main literature search was performed using relevant keywords in PubMed and Ovid (Medline) and reviewed using the Covidence platform. Of the 1331 potentially relevant literature records retrieved, 27 studies were subsequently selected for comprehensive analysis. Collectively, the literature revealed that NSCLC cell lines resistant to EGFR-TKI treatment possess characteristic metabolic and lipidomic phenotypic signatures that differentiate them from sensitive lines. Further exploration of these reported differences suggests that drug-resistant cell lines are differentially reliant on cellular energy sources and that modulation of relative energy production pathways may lead to the reversal of drug resistance.

SELECTION OF CITATIONS
SEARCH DETAIL